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Abstract
This paper studies totally asymmetric simple exclusion processes (TASEPs) on
two intersected lattices. Three different models are introduced: model A for
molecular motor motion, and models B and C for vehicle traffic. Extensive
Monte Carlo simulations are carried out. Phase diagrams and density profiles
of the three models are investigated. It is shown that phase diagrams of all
the three models are divided into three regions. The phase boundaries are
calculated by an approximate mean-field approach. It is found that the analytic
solutions are in good agreement with the results of Monte Carlo simulations.
For models B and C, spontaneous symmetry breaking is identified. The particle
density histograms and qualitative domain-wall explanation are presented to
describe the spontaneous symmetry breaking phenomenon. Finally, in model
C, the effect of lane-changing probability p on spontaneous symmetry breaking
is investigated. A threshold of p for the occurrence of symmetry breaking is
obtained.

PACS numbers: 05.70.Ln, 02.50.Ey, 05.60.Cd

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In recent years, asymmetric simple exclusion processes (ASEPs), which are discrete non-
equilibrium models that describe the stochastic dynamics of multi-particle transport along
one-dimensional lattices, have attracted the interests of physicists because it is an important
tool for understanding complex non-equilibrium phenomena [1–3]. In ASEPs, each lattice
site can be either empty or occupied by a single particle. Particles interact only through
hard-core exclusion potential. ASEPs was first introduced in 1968 for describing the kinetics
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of biopolymerization [4] and then have been applied successfully to analyze surface growth
[5, 6], gel electrophoresis [7], diffusion through membrane channels [8], protein synthesis
[9–11], dynamics of motor proteins moving along rigid filaments [12], traffic flow [13],
etc.

The simplest limit of an ASEP, which is called the totally asymmetric simple exclusion
processes (TASEP), is that particles can only move in one direction. The exact solutions of
TASEP exist [14, 15]. In this paper, we consider random sequential update rules, i.e., at each
time step we randomly choose a site on lattice to follow its dynamics. In this case, three
stationary phases exist, specified by the processes at the entrance, at the exit and in the bulk
of the system. Denote the injection and extraction rates at the entrance and exit by α and β,
respectively. For α < β and α < 0.5, the system is found in a low-density (LD) entry limited
phase with the particle current and bulk density

JLD = α(1 − α) and ρbulk,LD = α. (1)

For α > β and β < 0.5, the system is in a high-density (HD) exit limited phase with the
particle current and bulk density

JHD = β(1 − β) and ρbulk,HD = β. (2)

And for α > 0.5 and β > 0.5 the system is determined by processes in the bulk, and we have
a maximal-current (MC) phase with

JMC = 0.25 and ρbulk,MC = 0.5. (3)

In order to analyze more realistic phenomena, a number of different extensions of ASEPs
have been proposed, including particles occupy more than one lattice site [9, 16], disorders
effect in the bulk [17–21], particle moving in system with periodically varying sitewise disorder
[22], combination of random particles creation and annihilation [23], multi-lane extensions
[24–29], allowance of long-range hopping [30] and so on.

Many non-equilibrium behaviors such as boundary induced phase transition, the unusual
dynamical scaling and spontaneous symmetry breaking have been observed in ASEPs. One
of the most intriguing phenomena is symmetry breaking that the microscopic symmetric
dynamic rules lead to the occurrence of macroscopic asymmetric stationary states for some
sets of parameters. The first model that exhibits spontaneous symmetry breaking was proposed
in 1995, known as the ‘bridge model’ [31] where two species of particles move in opposite
directions. Following the work of ‘bridge model’, symmetry breaking has been studied in
detail in many other works [32–38].

This paper studies situations arising when two channels intersect at a crossing point, which
is widely observed either in molecular motor motion or vehicle traffic. To our knowledge,
ASEPs on two one-dimensional roads with a crossing have been studied only under periodic
boundary condition and with parallel update rules [39]. In this paper, we investigate TASEPs
on two one-dimensional lattices with an intersection under open boundary condition. The
lattices are sketched in figure 1(a). Two one-dimensional lattices with equal length 2L + 1
intersect at site c. Lattice 1 is in the horizontal direction and lattice 2 is in the vertical direction.
Therefore, the lattices are divided into four segments by site c, as shown in figure 1(b). The
sites are numbered as follows: segment I corresponds to site 1 → L, segment II corresponds to
site L+2 → 2L+1, segment III corresponds to site 2L+2 → 3L+1, segment IV corresponds
to site 3L + 2 → 4L + 1 and site c corresponds to site L + 1.

The study may be relevant for both molecular motor motion and vehicle traffic. We
present three different models. Model A is for molecular motor motion. In molecular motor
motion, the filaments where molecular motors travel may be crossed with each other. When
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(a)

(b)

Figure 1. (a) The sketch of two one-dimensional lattices with crossing. (b) Each lattice is divided
into two segments by site c.

the molecular motors arrive at the intersection, they may go to each of the two filaments. Thus,
the molecular motors can be considered as no pre-defined destination. Models B and C are
for vehicle traffic. In model B, the drivers know where the destination is and do not change
the destination. In model C, drivers might change the destination at the intersection.

Extensive simulations are carried out. In all the simulations, we set L = 1000 unless
otherwise mentioned. The phase diagrams and density profiles of all the three models are
investigated in detail and interesting phenomena are observed and explained.

The paper is organized as follows. Sections 2–4 present the model rules, simulation
results and results analysis of models A, B and C, respectively. Finally, the conclusion is given
in section 5.

2. Model A

2.1. Model rules

In this section, the update rules of model A are introduced. Random update rules of TASEP
are adopted. Note that the particles (corresponding to molecular motors here) do not have
a pre-defined destination in this model. In an infinitesimal time interval dt, site i is chosen
randomly (1 � i � 4L + 1).

• If i = 1 (entrance of lattice 1) or i = 2L + 2 (entrance of lattice 2), a particle is inserted
into site 1 or 2L + 2 with rate α provided the site is empty. If site 1 or 2L + 2 is occupied,
the particle moves to site i + 1 with rate 1 provided the site i + 1 is empty.

3
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Figure 2. The phase diagram of model A related to α and β. The solid line is from Monte Carlo
simulations and the dot line is from the mean-field approximation.

• If i = 2L + 1 (exit of lattice 1) or i = 4L + 1 (exit of lattice 2) and the site is not empty,
the particle is removed with rate β.

• If 1 < i < L + 1 (segment I), or L + 1 < i < 2L + 1 (segment II), or 2L + 2 < i < 3L + 1
(segment III), or 3L + 2 � i < 4L + 1 (segment IV) and the site is occupied, the particle
moves to site i + 1 with rate 1 provided the site i + 1 is empty. If i = 3L + 1 (exit of
segment III) and the site is occupied, the particle moves to site c with rate 1 provided the
site c is empty.

• If i = L + 1 (site c) and the site is occupied,

– the particle moves to site c3 with rate 1 provided the site c3 is empty and the site c4

is occupied,
– the particle moves to site c4 with rate 1 provided the site c4 is empty and the site c3

is occupied,
– the particle moves to site c3 with rate 0.5 and site c4 with rate 0.5 provided both sites

c3 and c4 are empty.

2.2. Simulation results

This section presents the simulation results of model A. The phase diagram related to α and β

is shown in figure 2. The phase diagram can be classified into three regions, and the situations
are always symmetric on both lattices. When α < λ1 ≈ 0.428 and α < β, both of the two
segments of each lattice are in the low-density phase, i.e., the system is in the phase LL, as
shown in figure 3(a). The bulk densities of all the four segments are equal and all equal
to α.

When β < λ1 ≈ 0.428 and β < α, the system is in the phase HH, as shown in
figure 3(b). The bulk densities of all the four segments are equal and all equal to 1 − β.

When α > λ1 ≈ 0.428 and β > λ1 ≈ 0.428, the system is in the phase HL. The bulk
densities of segments I and III are equal and both equal to 1 − λ1 and that of segments II and
IV are λ1.
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(a) (b)

(c) (d )

Figure 3. The density profiles of model A corresponding to different phases. Due to symmetry of
the results, only density profiles of one lattice are shown. (a) α = 0.2 and β = 0.7; (b) α = 0.7
and β = 0.2; (c) α = 0.8 and β = 0.7; (d) α = 0.2 and β = 0.2, L = 100.

2.3. Results analysis

Next we present the approximate stationary solutions of model A by using the method proposed
in [20]. As illustrated in figure 1(b), four segments are divided and each segment can be
regarded as a lattice of original single-channel TASEP. The extraction rates of segments I and
III are denoted by βeff1 and βeff2, and the injection rates of segments II and IV are denoted
by αeff1 and αeff2, respectively. Due to the symmetry of the system and the symmetric results
by simulations, all the properties in both lattices should be identical, i.e., βeff1 = βeff2 and
αeff1 = αeff2. Their values are as follows:

βeff1 = βeff2 = βeff = 1 − ρc,

αeff1 = αeff2 = αeff = ρc

[
ρc4 + 0.5

(
1 − ρc4

)] = 0.5ρc

(
1 + ρc4

)
.

(4)

When the lattice is in the phase LL, we have{
α < 0.5 and α < βeff

αeff < 0.5 and αeff < β.
(5)

Let us denote the fluxes of segments I and II by JI and JII , respectively. From JI = JII and
equation (1), we obtain ρc = 2α

1+ρc4
. And because segment IV is in the LD phase, ρc4 = α.
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Thus, ρc = 2α
1+α

. From equation (5), we obtain α < βeff = 1−ρc = 1− 2α
1+α

and αeff = α < β.
Thus, the lattice is in the LL phase when the following conditions are satisfied:{

α <
√

2 − 1
α < β.

(6)

Similarly, if the lattice is in the phase HH, then{
βeff < 0.5 and α > βeff

β < 0.5 and αeff > β
(7)

should be satisfied. From JI = JII and equation (2), we obtain βeff = β, which leads to
ρc = 1−β. Similarly, from αeff

(
1−ρc4

) = β(1−β), we obtain ρc4 = √
1 − 2β. Substituting

these expressions into equation (7), we obtain the condition of the existence of the phase HH
on a lattice: {

β <
√

2 − 1
β < α.

(8)

When the lattice is in the phase HL, then{
βeff < 0.5 and α > βeff

αeff < 0.5 and αeff < β
(9)

should be satisfied. And from JI = JII and equations (1) and (2), we obtain βeff(1 − βeff) =
αeff(1 − αeff), which leads to βeff = αeff or αeff + βeff = 1. Substituting the expressions of αeff

and βeff into αeff + βeff = 1, we obtain 1 − ρc + 0.5ρc

(
1 + ρc4

) = 1, which leads to ρc4 = 1.
However, it is conflicted with that segment IV is in the phase LD. Thus, βeff = αeff should be
satisfied. Substituting the expressions of αeff and βeff into βeff = αeff , we obtain

0.5ρc

(
1 + ρc4

) = 1 − ρc. (10)

Since segment IV is in low density, we have

ρc4 = αeff . (11)

From the above two equations and equation (4), ρc4 could be obtained, ρc4 = 1−ρc = √
2−1.

After substituting this result into equation (9), the conditions of the existence of the phase HL
on a lattice are as follows:{

α >
√

2 − 1

β >
√

2 − 1.
(12)

As shown in figure 2, the approximate stationary solutions are in good agreement with
the simulation results. Finally, we would like to mention α = β <

√
2 − 1 corresponds to a

line of phase transition between phases LL and HH. Thus, a linear density profile exists except
near site c (see figure 3(d)).

3. Model B

3.1. Model rules

Different from model A, the particles (corresponding to cars in vehicle traffic) in model B
have a pre-defined destination. There are four types of particles: type 1 enters from site 1 and
leaves from site 2L + 1; type 2 enters from site 1, changes direction at site c and leaves from
site 4L + 1; type 3 enters from site 2L + 2 and leaves from site 4L + 1; type 4 enters from site
2L + 2, changes direction at site c and leaves from site 2L + 1.

Random update is also adopted and a random site i is chosen during an infinitesimal time
interval dt.
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Figure 4. The phase diagram of model B related to α and β. Solid lines are from the Monte Carlo
simulation results with r = 1, 0.75 and 0.5 and the red dot line is from the approximate mean-field
approach.

• If i = 1 (entrance site of lattice 1) and the site is empty, a particle is inserted into the site
with rate α. The particle is of type 1 with probability r, and of type 2 with probability
1 − r . If the site is occupied, the particle will move to site i + 1 with rate 1 provided the
site i + 1 is empty. Similarly, if i = 2L+ 2 (entrance site of lattice 2) and the site is empty,
a particle is inserted into the site with rate α. The particle is of type 3 with probability r,
and of type 4 with probability 1 − r . If the site is occupied, the particle will move to site
i + 1 with rate 1 provided the site i + 1 is empty.

• If i = 2L + 1 (exit site of lattice 1) or i = 4L + 1 (exit site of lattice 2) and the site is
occupied, the particle is removed with rate β.

• If 1 < i < L + 1 (segment I), or L + 1 < i < 2L + 1 (segment II), or 2L + 2 < i < 3L + 1
(segment III), or 3L + 2 � i < 4L + 1 (segment IV) and the site is occupied, the particle
moves to site i + 1 with rate 1 provided the site i + 1 is empty. If site 3L + 1 (exit site of
segment III) is chosen and the site is occupied, the particle moves to site c provided the
site c is empty.

• If site i = L + 1 (site c) is chosen,

– if the site is occupied by particle of type 1 or 4, the particle moves to site c3 with rate
1 provided the site c3 is empty, independent of the status of the site c4,

– if the site is occupied by particle of type 2 or 3, the particle moves to site c4 with rate
1 provided the site c4 is empty, independent of the status of the site c3.

3.2. Simulation results

First, we focus on the phase diagram as shown in figure 4. Due to the symmetry of model
rules, we restrict ourselves to the case r � 0.5.3 It is found that the phase diagram is divided
into three regions.

When α < λ2 and α < β, the system is in the phase LL, as shown in figure 5(a). The
bulk densities of all the four segments are equal and all equal to α, independent of r.

3 For example, when r = 0, the situation is identical to that of r = 1 provided we assume lattice 1 consists of
segments I and IV and lattice 2 consists of segments II and III.

7



J. Phys. A: Math. Theor. 41 (2008) 035003 Y-M Yuan et al

(a) (b)

(c) (d )

Figure 5. The density profiles of model B corresponding to different phases with different value
of r. (a) α = 0.2 and β = 0.7; (b) α = 0.8 and β = 0.7; (c) α = 0.7 and β = 0.2 of lattice 1;
(d) α = 0.7 and β = 0.2 of lattice 2.

When α > λ2 and β > λ2, the system is in the phase HL, as shown in figure 5(b). The
bulk densities of segments I and III are equal and both equal to 1 − λ2 and that of segments II
and IV are λ2.

When β < λ2 and β � α, it is very interesting to find that spontaneous symmetry breaking
occurs in this region, as shown in figures 5(c) and (d). The bulk densities of the two segments
on one lattice equals 1 − β. On the other lattice, the bulk density on the downstream segment
is slightly lower than β and that on the upstream segment is slightly larger than 1 − β. Note
that the fluxes on both lattices differ only slightly, which is rather different situation than in
the ‘bridge model’ [31], where both densities and fluxes differ macroscopically. Moreover, in
our simulation, we found that the difference of fluxes on both lattices essentially does not vary
with system size.

Following [36], we also investigate the particle density histograms PL(ρ1, ρ2), where
ρ1 and ρ2 are instantaneous densities of particles in segments II and IV. Figure 6 shows the
particle density histogram with α = 0.7, β = 0.2 and r = 1, 0.75 and 0.5. It is shown that
the peaks are off the diagonal, which means that symmetry breaking occurs.

To demonstrate the spontaneous symmetry breaking, the flipping times between the two
states of the broken symmetry phase in a finite-sized system are studied. Figure 7(a) shows
the time evolution of the density difference between segments II and IV in an asymmetric
phase. Flips between the two symmetry related states are clearly seen.
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(a)

(b)

(c)

Figure 6. The density histograms of model B corresponding to the asymmetric phase with different
value of r. ρ1 denotes the instantaneous densities of segment II and ρ2 denotes the instantaneous
densities of segment IV. α = 0.7 and β = 0.2. (a) r = 1; (b) r = 0.75; (c) r = 0.5.

To evaluate the characteristic flipping time scale τ , we averaged the density difference
over many runs, starting from the configuration that all sites on segment II are occupied and
all sites on segment IV are empty. This average decays as e−t/τ and thus yields τ (see, e.g.,
figure 7(b)). The time scale versus L is shown in figure 8. It can be seen τ grows exponentially
with the L, which indicates spontaneous symmetry breaking does exist.
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(a)

(b)

Figure 7. (a) Time evolution of the density difference between segments II and IV in an asymmetric
phase with L = 25. (b) Decay of averaged density difference between segments II and IV (over
2 × 104 runs). The solid line is the guide for eyes. The parameters value α = 0.7, β = 0.2 and
r = 1.

From figure 4, we can also see the value of phase boundary λ2 increases with the increase
of r. It means that the phase HL shrinks while the phase LL and the asymmetric phase expand
with the increase of r.

3.3. Results analysis

First, we qualitatively explain the observed symmetry breaking in model B with large α

and small β using physical arguments of the domain-wall approach [40]. Suppose initially
segments II and IV are empty. When particles reach the exit sites of the two segments, the
domain wall (i.e., the shock) will form on the two segments and propagate upstream because
the removal rate is smaller than the effective entrance rate in the two segments. Due to
randomness, one of the domain wall reaches site c first, which leads to the stable HD phase
in the segment. On the other hand, a barrier is formed at site c, which leads to a significant
decrease of the effective entrance rate in the other segment. Thus, LD phase instead of HD
phase exist in the other segment. As a result, the system is found in the symmetry-broken
phase with one lattice in the HH phase and the other one in the HL phase.

10
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Figure 8. Characteristic flipping time scale τ versus L. The solid lines are the guide for eyes. The
parameters value α = 0.7, β = 0.2 and r = 1.

Next, the mean-field approach is adopted to analyze stationary states in phases LL and
HL. Note that the mean-field analysis is irrelevant to r because correlation is neglected in our
mean-field approach. The system is also divided into four segments as shown in figure 1(b).
In symmetric phases LL and HL, αeff = ρc

2 and βeff = 1 − ρc.
When the system is in the phase LL, the conditions (5) should be satisfied. From JI = JII

and equation (1), we obtain αeff = ρc

2 = α, which lead to ρc = 2α. Substituting αeff = α

and βeff = 1 − 2α into equation (5), we obtain that the system is in LL when the following
conditions are satisfied:{

α < 1
3

α < β.
(13)

When the system is in the phase HL, the conditions (9) should be satisfied. From
JI = (1 − ρc)ρc = 0.5ρc(1 − 0.5ρc) = JII , we obtain ρc = 2

3 . Substituting αeff = βeff = 1
3

into equation (9), the conditions of existence of HL can be reached:{
α > 1

3

β > 1
3 .

(14)

From the comparison of equations (13), (14) and figure 4, we know that the approximate
stationary solutions are in good agreement with the simulation results when r = 1. However,
with the decrease of r, the correlation becomes stronger and the mean field results deviate
simulation results. Furthermore, the mean-field approach could not be used for spontaneous
symmetry breaking phase because the correlation is also strong in asymmetric phase.

4. Model C

4.1. Model rules

Model C also corresponds to vehicle traffic. In model C, there are two types of particles: type
1 enters from site 1 and type 2 enters from site 2L + 2. The updating rules are as follows: a
random site i is chosen during an infinitesimal time interval dt.

11
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• If i = 1 (entrance site of lattice 1) and the site is empty, a particle of type 1 is inserted
into the site with rate α. If the site is occupied, the particle moves to site i + 1 with rate
1 provided the site i + 1 is empty. Similarly, if i = 2L + 2 (entrance site of lattice 2) and
the site is empty, a particle of type 2 is inserted into the site with rate α. If the site is
occupied, the particle moves to site i + 1 with rate 1 provided the site i + 1 is empty.

• If i = 2L + 1 (exit site of lattice 1) or i = 4L + 1 (exit site of lattice 2) and the site is
occupied, the particle is removed with rate β.

• If 1 < i < L + 1 (segment I), or L + 1 < i < 2L + 1 (segment II), or 2L + 2 < i < 3L + 1
(segment III), or 3L + 2 � i < 4L + 1 (segment IV) and the site is occupied, the particle
moves to site i + 1 with rate 1 provided the site i + 1 is empty. If site 3L + 1 (exit site of
segment III) is chosen and the site is occupied, the particle moves to site c provided the
site c is empty.

• If i = L + 1 (site c) and the site is occupied,

– if the site is occupied by a particle of type 1, then
∗ if site c3 is empty, the particle moves to the site c3 with rate 1 independent of the

status of site c4,
∗ if site c3 is occupied and site c4 is empty, the particle moves to the site c4 with

rate p,
– if the site is occupied by a particle of type 2, then

∗ if site c4 is empty, the particle moves to the site c4 with rate 1 independent of the
status of the site c3,

∗ if site c4 is occupied and site c3 is empty, the particle moves to the site c3 with
rate p.

Note that model C with p = 0 reduces to model B with r = 1.

4.2. Simulation results

The simulation results of model C are described in this section. The phase diagram is shown
in figure 9. One can see that three regions are classified as well. When α < λ3 and α < β,
the system corresponds to the LL phase: all the four segments are in the LD phase. The
corresponding density profiles with α = 0.2, β = 0.7 and different values of p are illustrated
in figure 10(a). We can see that the bulk densities of all the segments are equal to α under
different value of p.

When α > λ3 and β > λ3, the system corresponds to the HL phase: the bulk densities of
segments I and III are equal and equal to 1 − λ3 and that of segments II and IV are also equal
and equal to λ3. The corresponding density profiles are shown in figure 10(b). Note that λ3

decreases with the decrease of p, which means that the HL phase expands with the decrease
of p.

When β < λ3 and β � α, the situation depends on p.

• When p is smaller than a threshold pcr ≈ 0.025, the system corresponds to a symmetry-
broken phase, the same as the situation in model B. The corresponding density profiles
are shown in figures 10(c) and (d).
The density histogram of model C corresponding to the symmetry-broken phase is shown
in figure 11. Similar to that of model B, the peak is off the diagonal.

• When p > pcr , the system corresponds to a symmetric phase HH if β < λ3 and β < α:
the bulk densities of all the four segments are equal and equal to 1 − β. See, for example,
the density profiles corresponding to p = 1 and 0.1 in figures 10(c) and (d). Furthermore,
α = β < λ3 corresponds to a line of phase transition between phases LL and HH.

12
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(a)

(b)

Figure 9. The phase diagram of model C related to α and β. (a) p = 1, 0.1 > pcr ; (b) p =
0.01 < pcr .

The disappearance of symmetry breaking phenomenon is due to the barrier at site c is
broken with the enhancement of randomness.

4.3. Results analysis

In this section, the symmetric phases LL, HH and HL are solved by the mean-field
approximation. The same as in models A and B, the expressions of αeff and βeff can be
obtained:

αeff = ρc(pρc4 + 1)

2
and βeff = 1 − ρc. (15)

According to equation (1) and JI = JII , for the phase LL, αeff = α and ρc4 = α, which
leads to ρc = 2α

pα+1 . Thus,

αeff = α and βeff = (p − 2)α + 1

pα + 1
. (16)
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(a) (b)

(c) (d )

Figure 10. The density profiles of model C corresponding to different phases with different value
of p. (a) α = 0.2 and β = 0.7; (b) α = 0.8 and β = 0.7; (c) α = 0.7 and β = 0.2 of lattice 1;
(d) α = 0.7 and β = 0.2 of lattice 2.

When the system is in the phase LL, the conditions (5) should be satisfied. Substituting
equation (15) into equation (5), we obtain that the system is in LL when the following
conditions are satisfied:{

α <
p−3+

√
p2−2p+9

2p

α < β.
(17)

For the phase HH, we obtain βeff = β and αeff(1 − ρc4) = β(1 − β), which leads to

ρc = 1 − β and ρc4 = p−1+
√

(1−p)2−4p(2β−1)

2p
. Thus,

αeff = (1 − β)(3p − 1 +
√

(1 − p)2 − 4p(2β − 1))

4p
and βeff = β. (18)

When the system is in the phase HH, the conditions (7) should be satisfied. Substituting
equation (15) into equation (7), we obtain that the system is in HH when the following
conditions are satisfied:{

β <
p−3+

√
p2−2p+9

2p

β < α.
(19)
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Figure 11. The density histograms of model C corresponding to region II with asymmetric phase.
ρ1 denotes the average density of segment II and ρ2 denotes the average density of segment IV.
α = 0.7, β = 0.2 and p = 0.01.

For the phase HL, we obtain αeff = βeff and αeff = ρc4, which leads to ρc4 = 1 − ρc.

Substituting the expression of ρc4 into equation (15), we obtain ρc = p+3−
√

p2−2p+9
2p

. Thus,

αeff = βeff = p − 3 +
√

p2 − 2p + 9

2p
. (20)

When the system is in the phase HL, the conditions (9) should be satisfied. Substituting
equation (15) into equation (9), we obtain that the system is in HL when the following
conditions are satisfied:⎧⎪⎨

⎪⎩
α >

p−3+
√

p2−2p+9
2p

β >
p−3+

√
p2−2p+9

2p
.

(21)

Obviously, λ3 = p−3+
√

p2−2p+9
2p

. With the decrease of p, the value of λ decreases, which
is in good agreement with the simulation results.

5. Conclusion

In this paper, we have presented three different models to investigate the totally asymmetric
simple exclusion process on two intersected lattices under open boundaries with random
update. Extensive Monte Carlo simulations are carried out. The phase diagrams of all the
three models can be classified into three regions. However, differences exist. In model A, the
three regions correspond to LL, HH and HL while in model B correspond to LL, spontaneous
symmetry-broken phase, HL, respectively. In model C, the corresponding phases of the three
regions depends on the value of p. For pcr < p � 1, the three phases are LL, HH and HL and
for 0 � p < pcr are LL, spontaneous symmetry-broken phase and HL.

It is intriguing that symmetry breaking phenomena occurs in model B with large α and
small β and symmetry breaking will not disappear with different value of r. In model C,
however, symmetry breaking phenomena can maintain only when 0 � p < pcr . When
pcr < p � 1, symmetry breaking disappears. The qualitative explanations of occurrence of
symmetry breaking phenomena in model B and its disappearance in model C are presented.
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We also investigate the approximate stationary solutions. For model A, bulk densities
of all the three phases and the value of λ1 for transitions are obtained, which are in good
agreement with the simulation results. For model B with r = 1, the bulk densities of the
two symmetric phases and the value of λ2 for transitions are obtained. It is found that the
analytic results are in good agreement with simulation results when r = 1. However, with
the decrease of r, the mean field results deviate simulation results due to stronger correlation.
Moreover, the symmetry-broken phase cannot be solved by the mean-field approach due to
the strong correlation in asymmetric phase. And for model C, the value of phase transition λ3

is calculated.
In our future work, an analytical investigation of the asymmetric phase in models B and

C is needed.
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[15] Schütz G M and Domany E 1993 J. Stat. Phys. 72 227
[16] Lakatos G and Chou T 2003 J. Phys. A: Math. Gen. 36 2027
[17] Chou T and Lakatos G 2004 Phys. Rev. Lett. 93 198101
[18] Mallick K 1996 J. Phys. A: Math. Gen. 9 5375
[19] Evans M R 1997 J. Phys. A: Math. Gen. 30 5669
[20] Kolomeisky A B 1998 J. Phys. A: Math. Gen. 31 1153
[21] Tripathy G and Barma M 1997 Phys. Rev. Lett. 78 3039
[22] Lakatos G, Chou T and Kolomeisky A 2005 Phys. Rev. E 71 011103
[23] Parmeggiani A, Franosch T and Frey E 2003 Phys. Rev. Lett. 90 086601
[24] Popkov V and Peschel I 2001 Phys. Rev. E 64 026126
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